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ABSTRACT
Early Seedling Vigour (ESV) is an important trait for early establishment of rice crop in the direct seeded
condition. In the present study, genetic diversity in a set of 91 rice accessions of improved varieties, landraces
and wild rice accessions of Oryza nivara and Oryza rufipogon were assessed by 52 microsatellite markers
associated with early seedling vigour QTLs. A total of 82 alleles were amplified with an average of 2.34 alleles
per locus and their PIC values ranged from 0.374 to 0.071 with an average of 0.33. The model based population
structure approach grouped the total rice accession into two distinct populations ranged between 0.104
(population 1) and 0.334 (population 2), while allele frequency divergence between two populations was
0.105. The phylogenetic analysis grouped the genotypes into five major clusters and 12 sub-clusters. Results
indicated that, these rice genotypes exhibited a high genetic diversity and could be useful in rice improvement
programme specific to ESV.
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Rice (Oryza sativa L.) is the foremost cereal crops of
the world and primary food crop of half of the world’s
population. Globally, 158.8 million ha of rice is grown
with production of 738 million tons (FAO 2013), among
them 90% of rice grown and consumed in Asia. As on
today, rice production represents 30% of the world
cereal production. It has doubled in the last 30 years,
due to the introduction of new varieties, but its present
growth barely follows consumption. In the year 2025,
4.6 billion people would depend on rice for their daily
nourishment, compared with three billion today. The
ever increasing rice demand with shrinking natural
resources is a great challenge to plant breeders and
biotechnologist.

Weed is as old as agriculture, and from the
very beginning farmers realized the interference of
weed with crop productivity, which led to the co-
evolution of agro-ecosystems and weed management.

Weeds are the greatest yield-limiting constraint to rice.
The risk of yield loss from weeds in direct-seeded rice
is greater than transplanted rice (Rao et al. 2007). The
modern method of irrigation, practicing herbicide
application, deployment of new varieties with precocity
and high yield, and exaltation of labor cost in direct
seeding has become inevitable. High seedling vigour is
an important trait for direct seeding, as it can enhance
crop establishment and increases the plant’s ability to
compete against weeds (Dingkuhn et al. 1999; Rao et
al. 2007).

Early seedling vigour (ESV) is an essential
component of plant development under most
environmental conditions (Hund et al. 2004). In arid
environments, crop varieties with early seedling vigour
and good stand establishment tend to maximize use of
available soil water, resulting in increased dry matter
accumulation and improved grain yield (Liu et al. 2014;
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Mahender et al. 2015). However, genetic improvement
of early seedling growth, information on genetic
variation in traits related to early seedling vigour and
also knowledge concerning the relationships among
various seedling vigour traits is necessary to understand
for improvement of grain yield under direct seeded rice
(DSR).

The information on the magnitude of genetic
variability and the extent to which the desirable
characters are heritable is required for successful crop
improvement programme (Ravi et al. 2003; Das et al.
2013; Choudhury et al. 2013; Mizan et al. 2015; Yan
et al. 2015). SSR markers (or microsatellites) due to
their co-dominant and highly polymorphic nature offer
an easy, accurate, and quantifiable measure of the
genetic variation within crop plants. Therefore, the SSR
markers have been proved to be an ideal for making
genetic maps, markers assisted selection and studying
genetic diversity in diverse rice germplasms (Mahender
et al. 2014; Anandan et al. 2016; Tarang et al. 2016;
Pradhan et al. 2016). In this context, estimating genetic
diversity by molecular maker in the absence of
environmental influence is of great value in crop
improvement to identify diverse genotype with possibility
of getting transgressive segregants. As ESV is an
important trait contributor in the case of direct seeded
rice against weed competitiveness and nutrient
absorption. Studying genetic diversity for ESV with ESV
linked markers would be the most appropriate in the
present agricultural scenario and this could be the
prominent   report from India. The present investigation
has been carried out to estimate the extent of genotypic
variability among representative accessions of improved
varieties, landraces and wild rice accessions (Oryza
nivara and Oryza rufipogon) using ESV trait linked
SSR markers.

MATERIALS AND METHODS

Plant materials

Ninety-one rice accessions (including 14 improved
varieties, 37 landraces and 40 wild rice) were obtained
from Rice Genebank, National Rice Research Institute
(NRRI), Cuttack (Table 1). The collected seeds were
raised in trays under net house for sample collection.

SSR genotyping

Genomic DNA was isolated from fresh leaf of the rice

accessions by following the method of CTAB (Murray
and Thompson 1980). The final DNA concentration
was adjusted to 30mg/ μ lfor polymerase chain reaction
(PCR) analysis.

A total of 52 ESV trait QTLs linked SSR
markers were sampled from the reports of earlier
mapping population studies and the distribution of
markers covered all the chromosomes (Mahender et
al. 2015; Anandan et al. 2016) to assess the genetic
diversity of rice accessions. The details of molecular
markers information were collected in public domain
databases of www.gramene.org.

The PCR reaction mixture contained 30ng
templates DNA, 10pM concentration of each of the
primers, 2.5mM dNTPs, 1X PCR buffer (10 mM Tris-
HCl, pH 8.3, 50 mMKCl, 1.5 mM MgCl

2,
 and 0.01 mg/

ml gelatin) and 5U of Taq DNA polymerase in a volume
of 10ml. The reaction mixture was initially denatured
for 3 min at 940C, and, then, subjected to 30 cycles of
30 sec denaturation at 940C, 30 sec annealing at 50-
600C (varies according to primers) and 60 sec extension
at 720C; and a final extension for 5 min at 720C. PCR
products were resolved on 3% agarose gel. After
electrophoresis, the gel was visualized under UV and
photographed using Alpha Innotech gel documentation
system (Flour ChemTM 5500, Alpha Innotech, USA).

Molecular data analysis

The genetic diversity parameters such as number of
alleles per locus, major allele frequency, observed
heterozygosity and polymorphic information content
(PIC) were estimated using the POWERMARKER
Ver3.25 (Liu and Muse 2005). Allele frequency
represents the frequency of particular allele for each
marker. Heterozygosity is the proportion of
heterozygous individuals in the population. Polymorphic
information content that represent the amount of
polymorphism within a population was estimated based
on Botstein et al. (1980).

To assess the genetic structure, model based
approach and distance based approach were used. The
gene diversity analysis provides an unbiased estimation
of genetic variation at any given locus. The allelic data
were subjected to estimation of genetic distances among
genotypes using simple matching coefficients by
bootstrapping 10,000 times and they were clustered
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using neighbor joining method (Felsenstien, 1985).
Further, Principal Coordinates Analysis (PCoA) was
performed and the first two principal components were
used to represent the genetic distance among the
genotypes in graphical form. Both the clustering analysis

and PCoA were done using DARwin software ver 5.0
(Perrier et al. 2003; Perrier and Jacquemoud-Collet
2006). A hierarchical analysis of molecular variance
(AMOVA) of improved varieties, landraces and wild
rice accessions were calculated to partition genetic

Table 1. List of rice accessions/varieties used for the genetic diversity analysis

Sl.No. Rice varieties Type S. No Rice varieties Type

1 AC 100062(A) WD 47 Dular LR
2 AC 100062(B) WD 48 B1 LR
3 AC 100062(C) WD 49 B6 LR
4 AC 100107 WD 50 B8 LR
5 AC 100117 WD 51 B10 LR
6 AC 100142 WD 52 B11 LR
7 AC 100169 WD 53 B12 LR
8 AC 100175 WD 54 B13 LR
9 AC 100193 WD 55 B15 LR
10 AC 100219(A) WD 56 B16 LR
11 AC 100219(B) WD 57 B17 LR
12 AC 100281 WD 58 B18 LR
13 IR36 IM 59 B19 LR
14 AC 100296 WD 60 B20 LR
15 Heera IM 61 B21 LR
16 Khitish IM 62 B22 LR
17 Phalguni(A) IM 63 B23 LR
18 Phalguni(B) IM 64 Boff16 LR
19 Kamesh IM 65 AC 100006 WD
20 Neela IM 66 AC 100010 WD
21 Abhisek IM 67 AC 100015 WD
22 CR Dhan 103 IM 68 AC 100026 WD
23 Vandana IM 69 AC 100032(A) WD
24 Kalinga - 3 IM 70 AC 100032(A) WD
25 Brown gora LR 71 AC 100035 WD
26 SadaBahar IM 72 AC 100087 WD
27 CR Dhan 40 IM 73 AC 100121 WD
28 Sekri LR 74 AC 100123 WD
29 SukhaPanki LR 75 AC 100124 WD
30 ChakhaoAubi LR 76 AC 100133 WD
31 Kabuk Phou(A) LR 77 AC 100135 WD
32 Kabuk Phou(B) LR 78 AC 100203 WD
33 Leima Phou LR 79 AC 100281 WD
34 Baman Phou LR 80 AC 100209(B) WD
35 Buluharana LR 81 AC 100282(A) WD
36 Kumbhi Phou LR 82 AC 100283 WD
37 Long manabi(A) LR 83 AC 100284 WD
38 Long manabi(B) LR 84 AC 100285(B) WD
39 Akhiyaturfa LR 85 AC 100295 WD
40 Gini LR 86 AC 100301 WD
41 Arupathamkuruvai(A) LR 87 AC 100309 WD
42 Arupathamkuruvai(B) LR 88 AC 100326 WD
43 Kasalath LR 89 AC 100328 WD
44 Harishankar(A) LR 90 AC 100329 WD
45 Harishankar(B) LR 91 AC 100337(B) WD
46 Sarathi IM   

LR-Landraces; IM-Improved varieties; WD-Wild rice L-50bp ladder; 1-91 order of the rice genotypes
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diversity within and among accessions by Arlequin
software (Excoffier et al . 2005) with 1000
permutations. F statistics, which include F

IT
, deviations

from Hardy-Weinberg expectation across the whole
population, F

IS
 deviation from Hardy-Weinberg

expectation within rice accessions and F
ST

, correlation
of alleles between different rice accessions were
calculated using Arlequin.

Model based approach was utilized with
Structure ver 2.3.4 software (Pritchard et al. 2000).
To derive the number of population clusters (K),
STRUCTURE was run with K varying from 1 to 10,
with five runs for each K value. Values of L(K) (log
posterior probability of the data) returned by
STRUCTURE were averaged across simulations for
each K value by adapting the method given by Evanno
et al. (2005). The parameters were set to 1,00,000 burn-
in periods and 10,000 Markov Chain Monte Carlo
(MCMC) replications after burn-in with an admixture
and allele frequencies correlated model. Further, to
determine the true value of K, a plot of the second
order rate of change in L(K) between values of K ( Δ K)
was formed. A threshold of 80% genetic membership
coefficient was used to assign genotypes to the
respective population. Genotypes lesser than the
threshold were designated as ‘admixtures’.

RESULTS AND DISCUSSION

Genetic variability of 91 accessions of rice was
evaluated for the estimation of genetic diversity
parameters (Table 2) (Fig.1). Of the total of 52 SSR
markers used for genotyping the total rice accessions,
35 markers showed polymorphism and were used in all
analyses performed subsequently. The remaining 17
markers were not polymorphic and hence were
excluded. The 35 markers generated a total of 82
distinct alleles across 91 rice genotypes with an average
of 2.34 alleles per locus. The number of alleles varied
from 2-4 with an average number of alleles amplified
per marker was 2.34. The maximum numbers of alleles
(4) were amplified with RM336 and three alleles were
amplified with ten markers as RM3839, RM161, RM9,
RM148, RM340, RM16, RM252, RM8085, RM106 and
RM341. The size of the amplified fragments ranged
from 70bp to 750bp. The PIC value of the polymorphic
primers RM9, RM264, RM252,  RM106, RM7389 and
RM253 showed more than 0.374, while in RM223 and

RM3839 showed the lowest PIC value as 0.071 with
an average PIC value of 0.33.

Out of 35 SSRs, RM230 didn’t show any
heterozygosity and in the remaining of SSR markers, it
ranged from 0.011 (RM3839, RM334 and RM263) to
0.769 (RM161) with an average of 0.231. Further, the
gene diversity ranged from 0.074 (RM223 and
RM3839) to 0.500 (RM106, RM252, RM264, RM9)
with an average of 0.431. The major allele frequency
(MAF) at the SSR loci varied between 0.500 (RM252)
and 0.962 (RM3839 and RM223), with an average
value of 0.635 of the 91 rice genotypes shared common
allele per locus.

AMOVA has clearly brought out significant
differences among various genotypes evaluated
(Table 3). The AMOVA analysis revealed 14% (P<
0·001) of total genetic variation among the three
different rice populations, 36% (P< 0·001) among the
accessions and 50% (P< 0·001) within rice accessions.
The inbreeding co-efficient F

IS 
(0.418) and F

IT
 (0.502)

were found to be 1.00.

Cluster analysis

The Cluster analysis was carried out to assess genetic
distance and the dissimilarity matrix-using neighbor
joining method. In the Unrooted tree, genotypes were
grouped into five major clusters (Fig. 2) (Table 4) and
were again distributed into 12 sub-clusters. Among the
five major clusters, the highest number of accessions
contained in Cluster I with 35 rice genotypes, which
includes 30 wild rice accessions with four landraces
(Baman Phou, Leima Phou, Kabuk Phou (B),
Harishankar (A) and one improved variety Kalinga-3.
Further, the cluster 1 was sub grouped further into
cluster 1a (21), cluster 1b (9), and cluster 1c (5). The
second highest number of genotypes were recorded in
Cluster III which contained 24 rice genotypes belonging
to improved rice varieties and landraces (Fig. 2) (Table
4). The lowest number of rice accessions was observed
in Cluster V. The cluster V consists of only two rice
accessions B6 (landrace) and AC100175 (wild species).

Population structure and principal component
analysis

According to STRUCTURE analysis results based on
Bayesian clustering approach model, a significant
population structure was detected among the 91 rice
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accessions of improved varieties, landraces and wild
rice. The optimal number of groups were determined
by the maximum likelihood, and k was set at 2 implying
two structural groups were identified in the panel
(Fig. 2). In population1, 53 genotypes were grouped,
population 2 contains 24 genotypes and rest (14
genotypes) was identified as admixture. The genotype
with score >0.80 was considered as pure and <0.80 as
admixture.The fixation index (Fst) values of two
population ranged between 0.104 (population 1) and
0.334 (population 2), while allele frequency divergence
between two population was 0.105. The mean value of

admixture alpha (á) was 0.16,which suggests that most
of selected landraces and improved cultivars of each
subpopulation had a common ancestry with few
admixture individuals. The genetic diversity among the
91 rice accessions were visualized by PCoA in the
scatter plot (Fig. 2). The PC1 accounted for about
12.96% and PC2 accounted for 8.96% of the total
genetic variance (totaling 21.92%). In PCoA, genotypes
were presented in colors corresponding to the clusters
observed in unrooted tree.

Genetic diversity plays a major role in survival
and adaptability of a species, as changes happen in

Table. 2. Details of SSR molecular marker loci used for genotyping of 91 rice accessions and their genetic diversity parameters

S. No Markers Chr Motifs MAF TNA GD Ho PIC

1 RM9 1 (GA)15GT(GA)2 0.511 3 0.5 0.473 0.375
2 RM7075 1 (ACAT)13 0.527 2 0.498 0.242 0.374
3 RM1339 1 (AG)22 0.813 2 0.304 0.022 0.258
4 RM8085 1 (AG)26 0.533 3 0.498 0.121 0.374
5 RM221 2 (TC)4T3C3(TC)(CT)2 0.703 2 0.417 0.11 0.33
6 RM263 2 (CT)34 0.555 2 0.494 0.011 0.372
7 RM106 2 (GAA)5 0.511 3 0.5 0.495 0.375
8 RM341 2 (CTT)20 0.681 3 0.434 0.264 0.34
9 RM218 3 (TC)24ACT5(GT)11 0.703 2 0.417 0.11 0.33
10 RM148 3 (TG)12 0.593 3 0.483 0.484 0.366
11 RM85 3 (TGG)5(TCT)12 0.736 2 0.388 0.022 0.313
12 RM16 3 (TCG)5(GA)16 0.527 3 0.498 0.505 0.374
13 RM168 3 T15(GT)14 0.599 2 0.48 0.407 0.365
14 RM7389 3 (GATA)7 0.516 2 0.499 0.286 0.375
15 RM3839 4 (GA)23 0.962 3 0.074 0.011 0.071
16 RM13 5 (GA)6-(GA)16 0.527 2 0.498 0.022 0.374
17 RM26 5 (GA)15 0.687 2 0.43 0.385 0.338
18 RM87 5 (CTT)3T(CTT)11 0.819 2 0.297 0.319 0.253
19 RM161 5 (AG)20 0.549 3 0.495 0.769 0.373
20 RM334 5 (CTT)20 0.599 2 0.48 0.011 0.365
21 RM249 5 (AG)5A2(AG)14 0.615 2 0.473 0.549 0.361
22 RM252 5 (CT)19 0.5 3 0.5 0.692 0.375
23 RM340 6 (CTT)8T3(CTT)14 0.665 3 0.446 0.187 0.346
24 RM225 6 (CT)18 0.637 2 0.462 0.088 0.355
25 RM253 6 (GA)25 0.516 2 0.499 0.022 0.375
26 RM125 7 (GCT)8 0.923 2 0.142 0.154 0.132
27 RM336 7 (CTT)18 0.593 4 0.483 0.725 0.366
28 RM264 8 GA)27 0.505 2 0.5 0.044 0.375
29 RM230 8 (AGG)4(GA)9A(AG)13 0.538 2 0.497 0 0.374
30 RM223 8 (CT)25 0.962 2 0.074 0.077 0.071
31 RM258 10 (GA)21(GGA)3 0.56 2 0.493 0.044 0.371
32 RM3428 11 (CT)18 0.566 2 0.491 0.055 0.371
33 RM224 11 (AAG)8(AG)13 0.703 2 0.417 0.176 0.33
34 RM21 11 (GA)18 0.615 2 0.473 0.176 0.361
35 RM19 12 (ATC)10 0.659 2 0.449 0.022 0.348
Mean 0.635 2.34 0.431 0.231 0.332

RM-Rice Microsatellite;Chr-Chromosome; TNA-Total Number of Alleles; MAF-Major Allele Frequency; GD- Gene Diversity; Ho-
Observed Heterozygosity; PIC-Polymorphic Information Content
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environment, organism needs to make changes in the
phenotype that enables it to adapt and survive in
unfavorable conditions. Species with good amount of
genetic diversity among populations have more
variations to choose the fittest alleles. Species with little
genetic diversity are at a greater risk of extinction.
Broadening the genetic base of core breeding material
requires the identification of diverse parents for
hybridization with cultivated rice.

The SSR markers are a DNA-based co-
dominant marker, which offers greater variability in
crop germplasm that makes them more suitable in
molecular breeding. This marker has been successfully
applied in rice to decipher genetic diversity (Singh et
al. 2010; Das et al. 2013; Singh et al. 2013; He et al.
2014; Surapaneni et al. 2016; Anandan et al. 2016;
Edzesi et al. 2016; Pradhan et al.2016).The 35
polymorphic SSR markers used for this study revealed
a clear and consistent amplification profile. The total
numbers of 82 alleles were identified from the
polymorphic ESV trait QTL linked SSR marker with

91 rice genotypes and an average allele number of 2.34.
In an earlier report, Pervaiz et al. (2009) assessed
genetic variability of 35 Asian rice cultivars using 32
SSR markers and they observed 144 alleles with an
average of 4.5 alleles per locus. In similar way, Rahman
et al. (2010) screened 28 local rice varieties with seven
primers and found 82 alleles with an average of 11.7
alleles per locus. Jiang et al. (2004) also reported similar
observation of number allele per locus ranged from three
to as high as 22 with an average of 7.8 alleles per locus.
Israt et al. (2014) detected 321 alleles from 30
landraces and high yielding varieties using 27 SSR
markers and the number of alleles per locus generated
by each marker varied from 6 to 21 alleles with an
average number of polymorphic alleles per marker
11.89. Recently, Mizan et al. (2015) identified 76 alleles
in 24 rice germplasms using nine simple sequence
repeat (SSR) primers with an average of 8.44 alleles
per locus. Tarang et al. (2016) studied genetic diversity
in 64 rice (Oryza sativa L.) genotypes, including
breeding lines and improved varieties using 17 SSR

Fig. 1. Genotyping of 91 rice accessions with polymorphic microsatellite marker RM3428.

L-50bp ladder; 1-91 order of the rice genotypes
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Fig 2. Genetic grouping of 91 rice genotypes. A. Neighbour-joining tree showing five distinct clusters; B. STRUCTURE
grouping of rice genotype into two clusters
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markers. The amplified alleles were ranged from 2 to
4 alleles per locus.

In our study, maximum numbers of alleles, four were
amplified with RM336 and three alleles were amplified
by each one of the following markers viz., RM3839,
RM161, RM9, RM148, RM340, RM16, RM252,
RM8085, RM106 and RM341(Table 2). The variability
in the number of alleles identified per locus might be
due to utilizing  diverse rice genotypes as landraces,
improved varieties and wild rice. These variations in
multiple allele level indicate that, SSR marker is crucial
for identification of rice accessions at molecular level.
Similar results were observed in previous fingerprinting
and diversity studies, having 1 to 8 alleles with an
average of 4.58 alleles for various classes of
microsatellite (Siwach et al. 2004) and 3 to 9 alleles,
with an average of 4.53 alleles per locus of 30
microsatellite markers (Hossain et al. 2007).

In case of PIC value, the polymorphic primers
RM9, RM264, RM252,  RM106, RM7389 and RM253
showed more than 0.374 PIC value, while in RM223
and RM3839 showed the lowest PIC value as 0.071
with an average PIC value of 0.33 (Table 2). Similarly,
diverse level of PIC value were observed earlier as
0.48 (Ashfaq et al. 2012), 0.25 (Singh et al. 2013),
0.48 (Zhang et al. 2011), 0.17 (Mahender et al. 2014)
0.68 (Mizan et al. 2015), 0.24 (Anandan et al. 2016),
0.84 (Israt et al. 2014), 0.38 (Tarang et al. 2016) in
diverse set of rice germplasm. The reason for the varied
level of factors that affects PIC value in a breeding
and molecular research might be due to collection size,
diversity of the collection, breeding pattern of the
species and location of primers in the
genome.Therefore, the SSR markers those generate
higher number of alleles and having higher PIC values
could be used for future rice diversity analysis.

Table. 3. Analysis of molecular variance (AMOVA) based on the 35 SSR loci of 91 rice accessions

Source of variation df SS MS Est. Var. % P-value

Among Pops 2 138.778 69.389 1.158 14% <0·001
Among Indiv 88 866.651 9.848 2.905 36% <0·001
Within Indiv 91 367.500 4.038 4.038 50% <0·001
Total 181 1372.929 83.276 8.102 100%

d.f- degree of freedom; SSD- sum of squared deviations; Est. Var- variance component estimates; % -total percentage of total variation

Table. 4. Distribution of rice genotypes into different clusters based on ESV QTLs associated simple sequence repeat (SSR)

S.No Clusters Sub-clusters No. of Name of the varieties/accessions
genotypes

1 I 3 21 AC100282(a), AC100135, AC100328, AC100295, AC100032(A), AC100284,
AC100283, AC100281, AC100203, AC100337(B), AC100329, AC100285(B),
AC100309, AC100301, AC100015, AC100010, Baman Phou, Leima Phou, and
AC100124, AC100087

9 AC100133, AC100123, AC100209(B), AC100133, AC100123, AC100123,
AC100209(B), AC100326, AC100121, AC100035, AC100032(A), AC100026,
and Harishankar (A)

5 Kabuk Phou (B), AC100062 (B), AC100062(C), AC100062 (A) and Kalinga-3.
2 II 1 14 Khitish, AC100296, Heera, PhalgunI(B), Kamesh, Phalguni(A), AC100219(B),

AC100169, AC100281, IR36, AC100219(A), B1, AC100117, and AC100107
3 III 4 8 ArupathamKuruvai(A), Long manabi(A), ArupathamKuruvai(B), Gini,

Akhiyaturfa,  Longmanabi(B), Kumbi Phou, Buluharana
5 Sarathi, Harishanjer(B), B11, Kasalath, AC100142,
4 B12, B8, ChakhaoAubi, B10
7 Dular, CR Dhan 40, Brown gora, kabuki Phopu (A), sukhaPanki, B13,

AC100193.
4 IV 3 6 B21, B20, B19, B18, AC100006, B23

5 Boff6, B22, SadaBahar, Vandana, CR Dhan 103
6 B16, B15, B17, Abhisek, Neela and Sekri

5 V 1 2 B6 and AC100175

Structure analysis for early seedling vigour in rice A  Anandan et al



121r r

The highly polymorphic markers such as RM336
(Germination rate (GR), Shoot dry weight (SDW), Shoot
length (SL)-Huang et al. 2004), RM3839 (Shoot dry
weight (SDW)- Cheng et al. 2013), RM161 (Root length
(RL), Total dry weight (TDW), Early seedling vigour
(ESV), Field vigour (FV), Germination rate (GR)-Zhou
et al. 2006; Lu et al. 2007), RM9 (Germination rate
(GR), Shoot dry weight (SDW), Shoot fresh weight
(SFW)-Wang et al. 2010), RM148 (Germination rate
(GR), Shoot length (SL), Early seedling vigour (ESV),
Field vigour (FW)-Zhang et al. 2005; Zhou et al. 2006;
Lu et al. 2007), RM340 (Shoot length (SL), Germination
percentage (GP)-Zhang et al. 2005;Wang et al. 2010),
RM16 (Shoot length (SL), Shoot dry weight (SDW),
Root length (RL), Germination rate (GR)- Zhang et al.
2005), RM252 (Early seedling vigour (ESV),

Germination percentage (GP), Germination rate (GR),
Root activity (RA)-Cui et al. 2002; Lu et al. 2007;
Wang et al. 2010), RM8085 (Shoot length (SL)-Abe et
al. 2012), RM106 (Germination rate (GR)- Diwan et
al.2013) and RM341(Germination rate(GR)-Diwan et
al.2013; Diwan et al. 2013) are related to QTLs
associated with early seedling vigour traits in rice. In
the present study, which was carried out with landraces,
improved cultivars and wild rice genotypes, the markers
displayed polymorphism of the QTL linked markers
suggesting the close relationship between the markers
and the traits. This can help in use of these markers in
the marker assisted breeding programme to identify
superior genotypes for early seedling vigour traits under
DSR.

Fig. 3. Principal coordinate analysis of 91 rice genotypes based 35 SSRs (genotypes represented in colors corresponding to
the cluster observed in unrooted tree).
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Gel image of the present study showed production of
multiple alleles in 91 rice accessions. The presence of
multiple alleles suggests that, these markers could be
used effectively in molecular characterization of
different rice accessions. Despite the production of
multiple alleles, they were robust enough to distinguish
specifically diverse genotypes or different accessions
of the studied genotypes. In the present study, out of
35 SSRs, RM230 didn’t show any heterozygosity and
in the remaining markers it ranged from 0.011 (RM3839,
RM334 and RM263) to 0.769 (RM161) with an average
of 0.725 and gene diversity ranged from 0.074 (RM223
and RM3839) to 0.500 (RM106, RM252, RM264, RM9)
with an average of 0.431. Similarly, Mizan et al. (2015)
found an average gene diversity of 0.714 of 24
genotypes, ranging from 0.6188 to 0.7908. Recent study
of Anandan et al .(2016)found that,observed
heterozygosity (H

o
) ranged from 0.04 (RM3839) to 0.97

(RM148) with an average heterozygosity across all 39
loci was 0.42 from the 96 rice lines of landraces and
improved varieties. Tarang et al. (2016) reported an
average value of genetic diversity of 0.71 (0.21 to 1.37)
as measured by Shannon’s index indicating a
considerable genetic diversity and heterogeneity within
different selected varieties. Further, the genetic
heterozygosity of SSRs was found to be 0.28.

In the present study, we attempted to classify
the rice accessions by grouping them in relation to the
genetic diversity between the genotypes. The
STRUCTURE analysis revealed the optimal grouping
of the genotypes into two clusters with78 genotypes as
pure and 13 were identified as admixture. The fixation
index (Fst) value of two population ranged between
0.104 (population 1) and 0.334 (population 2), while
allele frequency divergence between two population
was 0.105. Similarly, Courtois et al. (2012), Das et al.
(2013), Anandan et al. (2016), Surapaneni et al. (2016)
and Pradhan et al. (2016) were also reported varying
number of (2 to 8) subpopulations from 425, 91, 629,
23, 240 number of accessions respectively.

In PCoA analysis, PC1 accounted for 12.96%
and PC2 accounted for 8.96% of the genetic variance,
totaling 21.92%.Two-dimensional scaling obtained using
PCoA analysis also showed the same grouping pattern
as UPGMA and sorted most of the cultivars into five
major clusters distributed across the quadrants. This
technique has been used to partition rice genotypes

based on variation in molecular data generated by ESV
QTLs trait associated molecular markers. In similar
way, Seetharam et al. (2009); Maji and Shaibu (2012);
Gana et al.(2013); Nachimuthu et al.(2015) also
exploited the genetic variance of the first PC for
classifying the rice genotypes.

Cluster analysis is a powerful method in the
evaluation of genetic relationship studies (Randi and
Lucchini 2002).Clustering based on polymorphic ESV
QTL trait associated SSR markers classified the total
rice accessions into improved varieties and wild rice
accessions. The neighbour-joining tree cluster analysis
of 91 rice genotypes, grouped them into five distinct
clusters (Table 3). The major distinct clusters showed
an additional sub-clusters identified within them. The
UPGMA diagram generated through marker data
information revealed that the genotypes derivatives of
genetically similar type clustered together. In the earlier
observations of cluster analysis, Yu et al. (2003) found
that three major clusters and 9 sub-clusters using
parental lines of 193 rice accessions and also
Chakravarti et al. (2006) classified the rice genotypes
into 11 distinct groups. Recently, Kumbhar et al. (2015)
classified 50 rice genotypes comprising landraces, local
selections, and improved varieties into 5 clusters and
11 sub-clusters using with SSR and ISSR markers.

The PIC values of the present study revealed
that RM9, RM264, RM252, RM106, RM7389 and
RM253 might be the best markers for identification of
early seedling vigour traits and diversity estimation of
rice genotypes. Physiological, morphological,
biochemical and molecular genetic diversity analysis in
a large germplasm collection will be relevant for the
successful implementation of the various breeding
approaches. In summary, it can be concluded that, a
combination of integrated morpho-physiological and
modern breeding approaches can help the researchers
(plant breeders and biotechnologist) to select better
genotypes for complex traits like early seedling vigour.
In this context, SSR markers provided an adequate
power of resolution to identify the superior genotypes
from the germplasm pools, as they can serve as a
potential tool in both identification and characterization
of different genotypes. This allows breeders to track
genetic loci controlling early seedling vigour traits in
rice effectively.
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